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ABSTRACT 
, f + ~ 7 ~ ~ + <  

A suff ic iency theorem f o r  t h e  s t a b i l i t y  of a l i n e a r l y  v i scoe la s t i c  

so l id  subjected t o  p a r t i a l  follower surface t r a c t i o n s  i s  established. 

It i s  shown t h a t  an appropriately defined func t iona l  metric space must 

be introduced i n  order t o  formulate a well-posed problem. The usual 

energy method, i f  applicable,  and the Galerkin method, i f  convergent, 

yield s t a b i l i t y  conditions only i n  a func t iona l  space whose metr ic  i s  

defined i n  an average sense. 
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1. Introduct ion 

3t 
It was shown by R. T. Shield and A. E. Green :1] t h a t  p roofs  of 

t h e  commonly used suf f ic iency  theorems f o r  t h e  s t a b i l i t y  of a l i n e a r l y  

e l a s t i c  continuum are, i n  general ,  de f i c i en t .  

s tudy t o  ind ica te ,  using the  stability theorems f o r  p a r t i a l  d i f f e r -  

e n t i a l  equations given by Zubov [2], t h a t  th i s  def ic iency arises from 

t h e  d e f i n i t i o n  of s t a b i l i t y  of a continuum, and i s  not  d i r e c t l y  

r e l a t e d  bo t he  l i nea r i za t ion  o f  the equations of  motion governing t h e  

e l a s t i c  continuum. 

It i s  the  aim of t h i s  

A t  t h e  outse t ,  it i s  shown tha t  t he  s t a b i l i t y  of a continuum 

must necessar i ly  be defined with respect  t o  a metr ic  which measures 

d is tance  i n  an infinite-dimensional space. This metr ic  may be 

postulated i n  var ious s u i t a b l e  forms. The equations of t h e  boundary 

value problem of a continuum, together with an e x p l i c i t l y  defined 

metric,  p ,  form a func t iona l  metric space whose fundamental proper- 

t i e s  vary depending upon t h e  spec i f ica t ion  of P ,  and thus  lead t o  

d i f f e r e n t  s t a b i l i t y  c r i t e r i a .  I n  t h i s  connection, we s h a l l  show t h a t  

t h e  usual energy methods, i f  applicable,  and t h e  Galerkin method, i f  

convergent, y i e l d  s t a b i l i t y  only with respec t  t o  an average metric.  

The problem of a l i n e a r  v i scoe la s t i c  so l id  subjected t o  p a r t i a l  

fo l lower  surface t r a c t i o n s  i s  t reated i n  d e t a i l  and a s u f f i c i e n t  

condi t ion f o r  s t a b i l i t y  of t h e  continuum with respec t  t o  an average 

met r ic  i s  establ ished.  

9 
Numbers i n  brackets r e f e r  t o  Bibliography a t  t h e  end of t h i s  paper. 
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2. Statement of t h e  Problem 

i 

We consider a f i n i t e  isotropic ,  homogeneous, l inear ly  v i s c o e l a s t i c  

so l id ,  bounded by 61 r egu la r  surface S, contained i n  a volume V. A t  t h e  

time t = 0, t h e  s o l i d  i s  i n  a s t a t e  of i n i t i a l  stress 6 

caused by a system of p a r t i a l  follower surface t r a c t i o n s  pi , applied 

at  t h e  boundary S. 

j i , j  = 1,2,3, i j  

By p a r t i a l  follower fo rces  w e  shal l  mean f o r c e s  

which fo l low i n  a spec i f ied  manner t h e  deformation of  t h e  surface 

element upon which they are act ing and are the re fo re  dependent upon 

t h e  motion of t h e  system. We s h a l l  refer t o  t h e  state of i n i t i a l  stress 

it 
I n  these  equations and i n  t h e  sequel  t he  repeated ind ices  are 

summed over t h e  range of t h e i r  def ini t ions.  

of the so l id  as unperturbed (equilibri-am) state end study its possible  

motions with reference t o  t h i s  s ta te .  

t h e  perturbed quantities are small  ( these  quantit i tecJ will, subsequently, 

be indiuated by a bar - ) so t h a t  a l l  terms of order  higher than t h e  

Furthermore, we shal l  assume t h a t  

second m a y  be neglected. The equations of motion of t h e  perturbed 

so l id ,  r e f e r r ed  t o  a f ixed  orthogonal Cartesian coordinate system, 

=e 131 
.. - - 

6 i j , j  + (‘jk %,k) , j  - ‘i = i n  V , 

- 
where m i s  t h e  m a s s  densi ty ,  x are the  coordinates,  ui t h e  displacement 

components measured from t h e  unperturbed state, t h e  components of t h e  

un i t  normal t o  S, Gi t h e  perturbations of t h e  applied surface t r ac t ions .  

A comma followed by i nd ices  k , j  i nd ica t e s  d i f f e r e n t i a t i o n  with respec t  

j 
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t o  xj Y '4( Y and do t s  denote der iva t ives  with respec t  t o  time. 

s h a l l  assume here t h a t  

We 

- 
where a( x ) 4% , xz , x ) i s  a parameter which serves t o  descr ibe  

t h e  manner i n  which t h e  surface t r a c t i o n s  fo l low the  deformation. If 

u Z 0 t h e  system i s  conservative and f o r  u Z 1 we have t h e  case of 

follower f o r c e  introduced i n  [ 3 3 .  

where a( x ) is, at least, of class C 

t i o n [ 4 ] .  

We s h a l l  consider here  the  cases  

i n  t h e  region of i t s  def in i -  1 

The cons t i t u t ive  equations s h a l l  be taken i n  t h e  form 

where b i s  t h e  Kronecker d e l t a ,  X and p are Lame constants,  and A' 

and p' are viscous constants  corresponding t o  Lam6 constants.  
i j  

A genera l  so lu t ion  t o  t h e  nonself-adjoint mixed i n i t i a l  and 

boundary value problem (1) cannot, i n  general ,  be easily obtained. 

T h e r e f o r g i n  order  t o  study t h e  s t a b i l i t y  of t h i s  system, we have t o  

r e s o r t  t o  some o ther  means and, consequently, we s h a l l  not  expect t o  

g e l n  as much information concerning s t a b i l i t y  as we would i f  we were t o  

cons t ruc t  and evaluate a general  so lu t ion  of  t he  system. As we s h a l l  

see i n  t h e  following sect ion,  t h i s  i s  by no means a shortcoming. A 

s t rong  s t a b i l i t y  c r i t e r ion ,  t h a t  m a y  be imposed on t h e  system and which 

could be applied i f  we were t o  solve system (1) completely, would be o f  



doubtful  i n t e r e s t .  

I n  t h i s  connection, we sha l l  consider a c e r t a i n  func t iona l  (which, 

i n  effect ,  expresses the energy of t h e  system) and explore t h e  s t a b i l i t y  

of (1) i n  some appropriate  average sense. Furthermore, we s h a l l  show 

t h a t  t h e  usua l  Galerkin method, which reduces t h e  system of p a r t i a l  

d i f f e r e n t i a l  equations (1) t o  a set  of ordinary d i f f e r e n t i a l  equations,  

y i e l d s  the same results as those obtained by a study of t he  func t iona l  

mentioned, provided a l l  t he  se r i e s  expansions employed converge i n  an 

average sense 

To t h i s  end, we consider a complete set  of ncrmdized eigen- 

vectors ,  obtained by solving t h e  homogeneous, self-adjoint  system 

deduced from (1) by s a t t i n g  d 
- = pi = 0 , which has the  same i j  - % j k l  

geometrical  boundary condi t ions as t h e  o r i g i n a l  problem. L e t  t h i s  set 

of orthonormal [ 51 eigenvectors be denoted by {‘pin( x )} ; i = 1,2,3 , 
n = 1,2,...p . 
system of ordinary d i f f e r e n t i a l  equations by expanding ii and i t s  

de r iva t ives  i n  terms of these  eigenvectors, without any attempt t o  

We s h a l l  reduce our o r i g i n a l  system of p a r t i a l  t o  a 

reso lve  t h e  question of convergence. I n  f a c t ,  a r igorous proof of 

convergence of t h e  Galerkin method, as applied t o  nonself-ad j o i n t  

l i n e a r  d i f f e r e n t i a l  operators,  does not,  t o  t h e  b e s t  knowledge of t h e  

authors,  as yet exist. However, some comparison between t h e  results 

obtained by applying this method t o  some simple problems and t h e  exact  

so lu t ions  [ 31, c e r t a i n l y  suggests t h a t  convergence m a y  be assumed. 
it 

* 
The paradox i n  the  problem of  f l u t t e r  of a membrane, as was shown 

i n  [37, i s  not  r e l a t ed  t o  t h e  f a c t  t h a t  t h e  system is  nonself-adjoint. 
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I n  o w  problem, we s h a l l  therefore  state t h a t  i f  convergence exists 

( i n  an average sense a t  least)  then t h e  t w o  methods y i e l d  i d e n t i c a l  

results.  

Let us now consider t h e  fundamental question concerning s t a b i l i t y  

of a sol id .  



I .  
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3. Concept of t h e  S t a b i l i t y  of a Continuum 

The concept of t h e  s t a b i l i t y  of a state of a dynamic system with 

a f ini te  number of degrees of freedom has a s i g n i f i c a n t  geometrical  

meaning. 

generalized coordinates a and generalized v e l o c i t i e s  $, ; 
n = 1,2,...,r . 

We consider a system with r degrees of freedom described by 

For a holonomic and autonomous system, we mite t h e  

equations of motion as 

in= f n  (zl , z2 ... $ 2  2 r  ) ; n = 1,2,...,2r ( 4 )  

o = ; n = 1,2,...,r , ptn 

and f n (  1; ) are bounded, continuous, real func t ions  vanishing f o r  

z n = o  . 
exis tence of a single-valued solut ion for t > 0 i n  the  region of t h e  

we assume fn satisfy all the  condi t ions required f o r  t h e  

d e f i n i t i o n  of zn . 
dynamic system by a point  i n  a 2r-dimensional hrcl idean space, BZr , 
with coordinates zn ; n = 1,2,...,2r . The equilibrium state of t he  

system at t h e  o r ig in  i s  said t o  be s t ab le  i f  f o r  any E > 0 we can f i n d  

Furthermore, we represent  t h e  s t a t e  of this 

2r 
rl 

a b > 0 depending on & only such t h a t  when L < b at t = 0 , we 
IF1 

2r 

have c z: < c f o r  all t > 0 . In t h e  opposite case zn = 0 is  
r r = l  

c a l l ed  unstable  161. Furthermore, zn = 0 i s  ca l led  asymptotically 

The above def in i t i ons  of s t a b i l i t y  are due t o  Liapunov [ 6 ] .  
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He also supplied the proofs of necessity and sufficiency, employing 

t h e  notion of dis tance i n  the  finite-dimensional Euclidean space EZr . 
For systems with an inf ini te  number of degrees of freedom (con- 

t inuous systems) the  notion of distance i n  an in f in i te  dimensional 

space needs t o  be introduced, if one wishes t o  extend Liapunovls con- 

cepts  t o  such systems. I n  t h i s  case, we have t o  be concerned with 

f u n c t i o n a h  rat;neT than funct ions and must e x p l i c i t l y  def ine a measure 

(metric) o f  dis tance of  two states of t he  system and then study the  

s t a b i l i t y  of t he  system with respect t o  this metric,  p .  

p m a y  be selected i n  any su i t ab le  manner (provided it s a t i s f i e s  th ree  

,fundamental conditions [7 ] )  so as t o  f u l f i l l  some physical  require- 

ments of t h e  problem at  hand. It m a y  be des i rab le ,  f o r  example, t o  

The metric 

limit t h e  displacements and the  ve loc i t ies  a t  each poin t  o f  t he  

so l id ,  i n  which case we def ine 

- -  :I 
p1 = u u + u u everywhere i n  V and on S . i i  i i  

I n  some other  cases, we may wish t o  r e s t r i c t  t he  s t r a i n s  as well as 

t h e  displacements and the  ve loc i t i e s  a t  each point  of t h e  so l id ,  

such t h a t  

- -  :: - - 
= u . u . + u  u + u  everywhere i n  V and on S . P2 1 1 i i i,j ui , j  

For most p r a c t i c a l  problems, however, it i s  usual ly  preferable  

t o  def ine p i n  an average sense; f o r  example 

2 :  - - - -  
u + u. u ]dv . ~3 = S  c u i  u i  + u i , j  i , j  i i  V 

We now s t a t e  t h e  de f in i t i on  o f  t he  s t a b i l i t y  of the  i n i t i a l  s t a t e  
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of a so l id  with respect  t o  an exp l i c i t l y  defined metr ic  p 121 , by 

appropriately extending t h e  corresponding d e f i n i t i o n  f o r  a f i n i t e  

system. 

The i n i t i a l  s t a t e  of t h e  continuous so l id  i s  s a i d  t o  be s t a b l e  

if f o r  a given E; > 0 us can f i n d  a b > 0 depending on E only such 

t h a t  when p < b at t = 0 we  have p < E f o r  all t > 0 . 
opposite case, t h e  i n i t i a l  s t a t e  i s  called unstable.  

t he  unperturbed state is cal led asymptotically s t ab le  if  it i s  

s t a b l e  and t l i m  p -. 0 . 
now De szawxi a 

I n  t he  

Furthermore, 

The suff ic iency theorem of s t a b i l i t y  m a y  
* Q D  

Theorem: 

I n  order t h a t  the unperturbed state of system (1) be 

s t a b l e  with respect t o  a metric p , i t  i s  s u f f i c i e n t  

t h a t  there  e x i s t s ,  by v i r t u e  of t h e  requirements of the 

boundary value problem (1) , a f i n i t e ,  non-increasing 

func t iona l  which i s  i d e n t i c a l l y  equal t o  zero f o r  p = 0 

and admits an i n f i n i t e l y  s m a l l  upper bound with respec t  

t o  the  metric p . 
The above theorem i s  an appropriate version of t he  theorem of  s t a b i l i t y  

given by A. A. Movchan [81 . I n  the sequel w e  shal l  use t h i s  theorem t o  

e s t a b l i s h  a sufficiency c r i t e r ion  f o r  t h e  s t a b i l i t y  of system (1). But 

l e t  us  f irst  d iscuss  some aspects of t h e  de f in i t i on  of s t a b i l i t y .  

It i s  seen t h a t  the s t a b i l i t y  c r i t e r i a  a re  highly dependent upon 

t h e  spec i f ica t ion  of the metric p . We m a y  not,  therefore ,  expect t o  
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apply a c r i t e r i o n  obtained, say ,  f o r  p3 t o  p 

The problem which was t r ea t ed  by R, T. Shield and A. E. Green [l] 

may exemplify t h i s  very point.  

e l a s t i c  sphere was perturbed by radially symmetric applied i n f i n i t e -  

and g e t  l i k e  results. 2 

An i so t ropic ,  homogeneous, l i n e a r l y  

s i m a l  d is turbances a t  t =  0 and it  was shown t h a t  t h e  s t r a i n  a t  t he  

center  of  t he  sphere can become f ini te  f o r  some t > 0 . Let us  show 

t h a t  although t h i s  system i s  unstable with respec t  t o  t h e  metric p 2  , 
it i s  s t ab le  with respect  t o  p 

ing func t iona l  

To this end we consider t h e  follow- 3 .  * 

whose time der iva t ive  i s  zero by v i r tue  of t h e  equations of  motion, 

and which admits an in f in i t e s ima l  upper bound Vdth respec t  t o  t he  

Worn the  inequa l i t i e s  [ll, 12, 131 3 *  metric p 

- - - - 
'2 S, "i,j u i , j  dv * S, ' i j k l  u i , j  %,I dv 

which are va l id  f o r  all admissible motions of t h e  s o l i d  with C1 and 

C2 being f ixed  pos i t i ve  constants independent of ii , we immediately 

cons t ruc t  t he  inequal i ty  

H1 2 K p3 f o r  all t 2 0 , 

9 
I n  reference [ 9 ]  A. A. Movchan has proved some s t a b i l i t y  and 

i n s t a b i l i t y  theorems f o r  a l i nea r ly  e l a s t i c  so l id  subjected t o  con- 
se rva t ive  forces.  See a l s o  [lo]. 
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where K is  a l so  a f i x e d  pos i t ive  number not  dependent on ui . 
l e t  H1 < K& and obta in  P3 < 6 a t  t = 0 

funct ion of time. 

t 2 0 , which implies 

We 

But H1 i a  a non-increasing 

Therefore Ke i s  an upper bound of H1for a l l  

p3 < e  f o r  all t 2 0 . 
I n  [11, t h e  i n i t i a l  disturbances were taken t o  be 

u = - =  u ' u = O ,  i = a [ i f ' ( r )  - f ' ( r )  3 j a t t = o  r &  r r 
x + 2u 

m where r measures dis tances  from the center  of t h e  sphere, c = 

and f ( r )  is given by 

f ( r )  = 0 O < r < a  

4 f ( r )  - - (r - a) - 5 5  e a  
(r - a - 2ea) a I; r II a + 2ea 

f ( r )  = O a +  & a <  r 

A simple ca lcu la t ion  shows t h a t  P 3  = O(E) at t = 0 

t = a/c we have, f o r  0 < r < 2 ~ a ,  

Furthermore, a t  

u = -  r2 (&a - r)3 (7r - 6ea) 
5 5  e a  

which immediately y i e l d s  P3 = O(e) at t = a/c , while the  s t r a i n  at  

t h e  center  of the  sphere a t  th i s  i n s t a n t  i s  finite:  

In  this example, one i s  able t o  obtain an exact  so lu t ion  t o  the  

d i f f e r e n t i a l  equations of the boundary value problem. Therefore, one 

i s  i n  t h e  pos i t ion  of requiring as strong a s t a b i l i t y  c r i t e r i o n  as 
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2 ’  one pleases. 

although it i s  s t a b l e  wlth respec t  t o  pg . 
t o  note i n  this connection i s  t h a t  t he  s t a b i l i t y  with respec t  t o  t h e  

metric p 

so lu t ion  of t h e  problem. 

We see t h a t  t h e  system i s  not s t a b l e  with respec t  t o  p 

The important point  

could have been deduced without possessing an e x p l i c i t  3 

I n  most p r a c t i c a l  problems, the  system m a y  w e l l  be s t a b l e  f o r  a l l  

p r a c t i c a l  purposes, while it m a y  not  s a t i s f y  t h e  point-wise s t a b i l i t y  

condi t ions with respec t  t o  t he  metrics P1 and P 2  

t h e r e  may exist a f in i t e  number of po in ts  i n  V &ere an in f in i t e s ima l  

per turba t ion  at t = 0 m a y  cause f inite,  say,  s t r a i n s  a t  these  poin ts  

f o r  some t > 0 . If t h e  co l lec t ion  of these  poin ts  forms a set with 

measure zero, then t h e  s t a b i l i t y  may exist with respec t  t o  t h e  

I n  those cases 

metric P 3  

The metric p seems t o  be more appealing a lso  from a purely 3 
mathematical po in t  of view. 

series expansion of a piecewise continuous funct ion i n  a f in i te  domain 

i s  an approximation i n  a mean square sense and not  a pointwise repre- 

sentat ion.  The following discussion w i l l ,  therefore ,  be devoted t o  

t h e  s t a b i l i t y  of system (1) wi th  respec t  t o  t h e  metric p 

I n  this regard, l e t  us note t h a t  t h e  

3 .  



4* Analysis of S t a b i l i t y  

Ws consider a func t iona l  H given by 

and note t h a t ,  from t h e  requirements of t h e  boundary value problem (l), 

H is  a continuous func t iona l  which vanishes i d e n t i c a l l y  at t h e  i n i t i a l  

unperturbed state of t h e  solid r P 3 = 0 .  

H i s  

The t o t a l  time de r iva t ive  of 

But we have 

- 1. t .f “ i j k l  %,1 + ‘ljkl. 4,l’ ui,j dv = .f “ij n j u i d S -  
V s 

and 
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where i n  the  last reduct ion wb have used t he  fact t h a t  for t h e  unper- 

turbed state M havo 

d = 0 in V and Ojk \ = p j  on S . 
i j  , j  

Equation ( 5 )  now becomes 

- .. - (‘jk ‘i,k ) ,j } tl dv + 

uhich i o  I d e n t i c a l l y  equal t o  zero by virtue of equations (1) f o r  a l l  

admirroible perturbed motion6 of the eolld.  

poei t ivo definite func t iona l ,  then it admito an infinitely .mall upper 

bound with respec t  t o  p3 . To show t h i s  WB l e t  l i i j  < & , lii1 < ./E 
and 

Moreover, i f  H i r  a 

j l  < *r, at t = 0 , and obtain , 
P3 < 15 v E a t t = O .  

Thon, a8 H > 0 ,  H have 

B < K c = b  r t t = O ,  

wbro K l a  a posltlve oonr tmt ,  But b l r  an upper bound of  H f o r  a l l  

t )  0 , ar €I l o  a mn-lnorourlng f’motion of tinu. 

a porltlvr d o f i n i t e  f’unotlonal, then all tho roquirsmsntr of t h e  

rufflolenuy theorom are i u l f l l l o d  and w) have the folloulng theorem 

Thorofore, if €I io 

Thooromr 

For a llnoarly viecoolast ic  r o l i d  subjected t o  a set of 



p a r t i a l  follower forces  t o  be s t a b l e  with respect t o  t h e  

metric p 

by equation (5 )  be a pos i t ive  def ini te  quant i ty  for ad- 

, it is  su f f i c i en t  t h a t  t h e  func t iona l  H given 3 

missible  perturbed motions of t h e  so l id  about t h e  state 

of i n i t i a l  stress. 

L e t  us note t h a t  t h e  requirement of H being a pos i t i ve  d e f i n i t e  

func t iona l  may imply a stronger s t a b i l i t y  condi t ion than i s  given by 

This touches then upon t h e  question o f  t h e  necessary condi t ions p3 
which w i l l  not  be d e a l t  with here. 

From t h e  above discussion we may conclude t h a t  t h e  commonly used 

energy methods y i e ld  s t a b i l i t y  c r i t e r i a  with respec t  t o  an average 

metr ic  p3 . Therefore we may not, by any means, expect t o  r e t r i e v e  

any more information than i s  retained after this averaging process. 

T h i s  conclusion i s  also val id  fo r  most approldmate methods such as 

t h e  Ftitz, t h e  Galerkin and other methods, where we use aome averaging 

processes  t o  reduce t h e  system of p a r t i a l  t o  a set of ordinary d i f f e r -  

e n t i a l  equations. 

bu t  l e t  us make first another remark regarding system (1) and funct- 

i o n a l  H. 

and obta in  from (5) 

We s h a l l  explore t h i s  po in t  f u r t h e r  i n  t h e  sequel, 

- P t  - 
We l e t  so lu t ion  of (1) be of a form ui = $, ( x ) e 



If we subs t i t u t e  ii = $, ePt i n t o  equations (1) , we obtain an eigen- 

value problem with eigenvalues p . From equation (8) we may conclude 

t h a t ,  f o r  H t o  be a non-increasing funct ion of time, p must have a 

non-positive real  par t .  

we now reduce equations (1) t o  a set of ordinary d i f f e r e n t i a l  

equations, 

terms of t h e  complete set of eigenvectors { 'Pin ( 5 ) } ; i = 1,2,3 , 
n = 1,2,...,-, such t h a t  

We assume t h a t  ii and i ts  de r iva t ives  can be expanded i n  

N N  

n=l m = l  

N N  

I sl  pF1 

i ;  
f o r  iome I > M , where I4 i s  a large pos i t ive  number depending on E 

i = 1,2,...,5 i n  t he  above inequa l i t i e s  and 

we please by se l ec t ing  M su f f i c i en t ly  large.  

may be made as small as 

For such an M, equation 
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(7) reduces t o  

N N 

IF1 IF1 

where 

and 

I n  obtaining ( l o ) ,  i n  addi t ion  t o  t h e  Gauss theorem we have a lso  

u t i l i z e d  t h e  f a c t  t h a t  { ‘Pin } are so lu t ions  t o  

+ m w 2 q  = O   in^, ‘ i j k l  % n , l j  n i n  

Cijkl ThYl n j  = 0 on s , 

For ; m = 1 , 2 , . . . , N  not i d e n t i c a l l y  zero, equations (10) y i e l d  

N N 
2 % + C, \ + urn (bmn + bm) qn = 0 , m = 1,2,...,M , (10‘) 

which is a system of non-self-adjoint, ordinary d i f f e r e n t i a l  equations. 

Similarly, H reduces t o  
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N N 

O IF1 

For a pos i t i ve  d e f i n i t e  H i n  a region p < R ; R > 0 , we can f i n d  3 
an M such t h a t  Ti is a lso  a posi t ive d e f i n i t e  quant i ty  w i t h i n  a r i n g  
- 
R1 < F3 < E , where i s  defined by 3 

N - 
= (( + c) i n  a 2N-dimensional Euclidean space. More- 

p3 
F l  

over, E, is dependent only upon Ei i n  i n e q u a l i t i e s  (9) and may be made 

as small  as we please by choosing M l a rge  enough. 

theorem we therefore  conclude tha t ,  f o r  system (1) t o  be s t ab le  with 

respec t  t o  t h e  metric p 

d e f i n i t e  quantity.  But vanishes f o r  = 0 and is  i d e n t i c a l l y  

equal  t o  aero along any path sa t i s fy ing  equations (10'). 

by Liapunov's s t a b i l i t y  theorem [6], system (10') i s  s t ab le  when Ti 

From t he  s t a b i l i t y  

, it is s u f f i c i e n t  t h a t  E be a pos i t ive  
3 - 

dH 
3 

Therefore, 



* 

, 
I .  

i s  a pos i t i ve  d e f i n i t e  quantity,  and l ikewise when H is  a pos i t i ve  

d e f i n i t e  quantity. 

The study of s t a b i l i t y  of t h e  system of l i n e a r  homogeneous 

ordinary d i f f e r e n t i a l  equations (u)) is, however, a c l a s s i c a l  

mathematical problem. For t he  s t a b i l i t y  of (lo'), it is necessary 

and suf f ic ien t  t h a t  t h e  roo t s  of the  cha rac t e r i s t f c  equation of (10') 

have non-positive real  par ts .  

which i n  fact is a statement of  t h e  energy of t he  system, can provide 

However, the  study of t h e  func t ion  E, 

us with a b e t t e r  i n s igh t  i i i to  the p h j s i c a l  behavior of t h e  system. 

We s h a l l  consider t h i s  aspect i n  d e t a i l  i n  another study and merely 

note here t h a t  t he re  exist t w o  d i s t i n c t  modes of i n s t a b i l i t y  of 

system (1). One i s  characterized by divergent motion o r  t h e  exis tence 

of an adjacent equilibrium configuration, t h e  other  by f l u t t e r  o r  t h e  

exis tence of an amplified osc i l la t ion .  Divergent motion may occur i f ,  

f o r  a vir tual  ( s t a t i c )  displacement of t he  system, t h e  work of t h e  

applied fo rces  equals t he  change i n  t h e  s t r a i n  energy of t h e  system, 

namely 

o r  equivalent ly  
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- 
b i i  dS = 0 - S Q *j u i , j  s 

where b i s  t h e  v a r i a t i o n a l  symbol. 

Let us now assume t h a t  a i s  func t ion  of a real  parameter y ; - < y < w , i n  addi t ion  t o  "1 , x2 , and x3 ; a E a(% , x2 , x3 ; Y) 
- 

Moreover, we consider a proportional loading p ( x ) , where is  

a finite,  dimensionless, r e d  cmbes; 0 B < 00 . I n  this way,  t h e  
j 

plane of p-r i s  divided i n t o  regions of s t a b i l i t y  and i n s t a b i l i t y  

by equation (12). 

i n  this case, i s  t o  make t h e  s t a b i l i t y  reg ions  a closed set (except, 

The effect o f  t h e  l i n e a r  v i s c o s i t y  (equation (3 ) ) ,  

possibly,  f o r  a set with measure zero; a f i n i t e  number of i s o l a t e d  

points in this plane.). 

The l i m i t i n g  condition f o r  t h e  f l u t t e r  of system (l), by con- 

trast, i s  obtained when 

- - - W 
H3 = s .f ['ijkl 'i,j ;k,l - 'jk (a U i , j ) , k  ui 3 dvdt = 0 

o v  

where w is t h e  frequency of steady state o s c i l l a t i o n  of t h e  s o l i d  

about i t s  unperturbed state. 

H3 > 0 and empllfies if  H3 < 0 . 
The motion of t h e  so l id  decays i f  



5 .  ConcludinR Remarks 

I n  conclusion it should be emphasized t h a t  t h e  suf f ic iency  

theorem f o r  t h e  s t a b i l i t y  of a Unear ly  v i scoe la s t i c  s o l i d  s u b  

j ec ted  t o  p a r t i a l  follower surface t r a c t i o n s  advanced i n  this study 

has been establ ished only  with respect t o  a p a r t i c u l a r  func t iona l  

metric space. This work, then, i n  e f f e c t ,  i s  an i l l u s t r a t i o n  of 

t h e  ind ispensabi l i ty  of an e x p l i c i t l y  defined metr ic  and no attempt 

UBS made t o  e s t a b l i s h  a necessi ty  theorem, 

ra i sed  as t o  t h e  convergence of the Galerkin method as applied t o  

non-self-adjoint operatore. Likewise, the important problem of t h e  

possible  r o l e  of nonl inear i ty  of various sources was de l ibe ra t e ly  

excluded, 

motion and f l u t t e r ) ,  possible  i n  the  presence of follower forces ,  

were mentioned only b r i e f l y  and w i l l  be t r ea t ed  i n  d e t a i l  f o r  a 

general  finite system i n  a separate invest igat ion.  

e f f e c t  of U n e a r  viscous damping i n  a continuous system subjected t o  

nonconservative fo rces  w i l l  also be discussed elsewhere. 

Nor was the  question 

The t w o  d i f f e r e n t  types of loss of s t a b i l i t y  (divergent 

The des tab i l iz ing  
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